Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Curr Alzheimer Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623984

RESUMO

Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.

2.
Cell Chem Biol ; 31(4): 760-775.e17, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38402621

RESUMO

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.


Assuntos
Aminoacil-tRNA Sintetases , Antifúngicos , Animais , Camundongos , Antifúngicos/farmacologia , Aminoacil-tRNA Sintetases/genética , Candida albicans , Relação Estrutura-Atividade
3.
Nat Commun ; 14(1): 5625, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699927

RESUMO

The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro's susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating large-scale rearrangements upon oxidation, the mechanisms of conformational change and its functional consequences are poorly understood. Here, we present the crystal structure of an Mpro point mutant (H163A) that shows an oxidized conformation with the catalytic cysteine in a disulfide bond. We hypothesize that Mpro adopts this conformation under oxidative stress to protect against over-oxidation. Our metadynamics simulations illustrate a potential mechanism by which H163 modulates this transition and suggest that this equilibrium exists in the wild type enzyme. We show that other point mutations also significantly shift the equilibrium towards this state by altering conformational free energies. Unique avenues of SARS-CoV-2 research can be explored by understanding how H163 modulates this equilibrium.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Mutação , Proteases 3C de Coronavírus
4.
Front Mol Biosci ; 10: 1178439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426420

RESUMO

The RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (A1) regulates RNA metabolism, which is crucial to maintaining cellular homeostasis. A1 dysfunction mechanistically contributes to reduced cell viability and loss, but molecular mechanisms of how A1 dysfunction affects cell viability and loss, and methodologies to attenuate its dysfunction, are lacking. Utilizing in silico molecular modeling and an in vitro optogenetic system, this study examined the consequences of RNA oligonucleotide (RNAO) treatment on attenuating A1 dysfunction and its downstream cellular effects. In silico and thermal shift experiments revealed that binding of RNAOs to the RNA Recognition Motif 1 of A1 is stabilized by sequence- and structure-specific RNAO-A1 interactions. Using optogenetics to model A1 cellular dysfunction, we show that sequence- and structure-specific RNAOs significantly attenuated abnormal cytoplasmic A1 self-association kinetics and A1 cytoplasmic clustering. Downstream of A1 dysfunction, we demonstrate that A1 clustering affects the formation of stress granules, activates cell stress, and inhibits protein translation. With RNAO treatment, we show that stress granule formation is attenuated, cell stress is inhibited, and protein translation is restored. This study provides evidence that sequence- and structure-specific RNAO treatment attenuates A1 dysfunction and its downstream effects, thus allowing for the development of A1-specific therapies that attenuate A1 dysfunction and restore cellular homeostasis.

5.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298426

RESUMO

Alzheimer's disease (AD) is one of the leading causes of death worldwide, with no definitive diagnosis or known cure. The aggregation of Tau protein into neurofibrillary tangles (NFTs), which contain straight filaments (SFs) and paired helical filaments (PHFs), is a major hallmark of AD. Graphene quantum dots (GQDs) are a type of nanomaterial that combat many of the small-molecule therapeutic challenges in AD and have shown promise in similar pathologies. In this study, two sizes of GQDs, GQD7 and GQD28, were docked to various forms of Tau monomers, SFs, and PHFs. From the favorable docked poses, we simulated each system for at least 300 ns and calculated the free energies of binding. We observed a clear preference for GQD28 in the PHF6 (306VQIVYK311) pathological hexapeptide region of monomeric Tau, while GQD7 targeted both the PHF6 and PHF6* (275VQIINK280) pathological hexapeptide regions. In SFs, GQD28 had a high affinity for a binding site that is available in AD but not in other common tauopathies, while GQD7 behaved promiscuously. In PHFs, GQD28 interacted strongly near the protofibril interface at the putative disaggregation site for epigallocatechin-3-gallate, and GQD7 largely interacted with PHF6. Our analyses revealed several key GQD binding sites that may be used for detecting, preventing, and disassembling the Tau aggregates in AD.


Assuntos
Doença de Alzheimer , Grafite , Pontos Quânticos , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Grafite/metabolismo , Medicina de Precisão , Proteínas tau/metabolismo , Emaranhados Neurofibrilares/metabolismo
6.
ACS Omega ; 8(20): 17446-17498, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251190

RESUMO

Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.

7.
Eye Contact Lens ; 49(5): 193-198, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912460

RESUMO

PURPOSE: To validate the mechanism and inhibitory activity of quercetin against matrix metalloproteinase-9 (MMP-9) using a hybrid in silico and in vitro approach. METHODS: The structure of MMP-9 was obtained from the Protein Data Bank, and the active site was identified using previous annotations from the Universal Protein Resource. The structure of quercetin was obtained from ZINC15. Molecular docking was performed to quantify the binding affinity of quercetin to the active site of MMP-9. The inhibitory effect of various concentrations of quercetin (0.0025, 0.025, 0.25, 1.0, and 1.5 mM) on MMP-9 was quantified using a commercially available fluorometric assay. The cytotoxicity of quercetin to immortalized human corneal epithelial cells (HCECs) was quantified by obtaining the metabolic activities of the cells exposed to various concentrations of quercetin for 24 hr. RESULTS: Quercetin interacts with MMP-9 by binding within the active site pocket and interacting with residues LEU 188, ALA 189, GLU 227, and MET 247. The binding affinity predicted by molecular docking was -9.9 kcal/mol. All concentrations of quercetin demonstrated significant inhibition of MMP-9 enzyme activity (all P <0.03). There was little to no reduction of HCEC metabolic activity after a 24-hr exposure to all concentrations of quercetin ( P >0.99). CONCLUSIONS: Quercetin inhibited MMP-9 in a dose-dependent manner and was well-tolerated by HCECs, suggesting a potential role in therapy for diseases with upregulated MMP-9 as part of its pathogenesis.


Assuntos
Metaloproteinase 9 da Matriz , Quercetina , Humanos , Quercetina/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia
8.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526365

RESUMO

Injuries to peripheral nerves are frequent, yet no drug therapies are available for effective nerve repair. The slow growth rate of axons and inadequate access to growth factors challenge natural repair of nerves. A better understanding of the molecules that can promote the rate of axon growth may reveal therapeutic opportunities. Molecular profiling of injured neurons at early intervals of injury, when regeneration is at the maximum, has been the gold standard for exploring growth promoters. A complementary in vitro regenerative priming model was recently shown to induce enhanced outgrowth in adult sensory neurons. In this work, we exploited the in vitro priming model to reveal novel candidates for adult nerve regeneration. We performed a whole-tissue proteomics analysis of the in vitro primed dorsal root ganglia (DRGs) from adult SD rats and compared their molecular profile with that of the in vivo primed, and control DRGs. The proteomics data generated are available via ProteomeXchange with identifier PXD031927. From the follow-up analysis, Bioinformatics interventions, and literature curation, we identified several molecules that were differentially expressed in the primed DRGs with a potential to modulate adult nerve regrowth. We then validated the growth promoting roles of mesencephalic astrocyte-derived neurotrophic factor (MANF), one of the hits we identified, in adult rat sensory neurons. Overall, in this study, we explored two growth priming paradigm and shortlisted several candidates, and validated MANF, as potential targets for adult nerve regeneration. We also demonstrate that the in vitro priming model is a valid tool for adult nerve regeneration studies.


Assuntos
Gânglios Espinais , Traumatismos dos Nervos Periféricos , Ratos , Animais , Gânglios Espinais/metabolismo , Proteômica , Ratos Sprague-Dawley , Células Cultivadas , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo
9.
J Biomol Struct Dyn ; 40(15): 6921-6938, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33682632

RESUMO

COVID-19 caused by a positive-sense single stranded RNA virus named as severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) triggered the global pandemic. This virus has infected about 10.37 Crores and taken lives of 2.24 Crores people of 213 countries to date. To cope-up this emergency clinical trials are undergoing with some existing drugs like remdesivir, flavipiravir, lopinavir-ritonavir, nafamostat, doxycycline, hydroxy-chloroquine, dexamethasone, etc., despite their severe toxicity and health hazards among diabetics, hypertensive, cardiac patients or normal individuals. The lack of safe and approved treatment for COVID-19 has forced the scientific community to find novel and safe compounds with potential efficacy. This study evaluates a few selective herbal compounds like glucoraphanin, vitexin, niazinin, etc., as a potential inhibitor of the spike protein and 3-chymotrypsin-like protease (3CLpro) or main protease (Mpro) of SARS-COV-2 through in-silico virtual studies such as molecular docking, target analysis, toxicity prediction and ADME prediction and supported by a Molecular-Dynamic simulation. Selective phytocompounds were docked successfully in the binding site of spike glycoprotein and 3CLpro (Mpro) of SARS-CoV-2. In-silico approaches also predict this molecule to have good solubility, pharmacodynamic property and target accuracy through MD simulation and ADME studies. These hit molecules niazinin, vitexin, glucoraphanin also obey Lipinski's rule along with their stable binding towards target protein of the virus, which makes them suitable for further biochemical and cell-based assays followed by clinical investigations to highlight their potential use in COVID-19 treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases
10.
Protein Eng Des Sel ; 342021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34427656

RESUMO

Targeted inhibition of misregulated protein-protein interactions (PPIs) has been a promising area of investigation in drug discovery and development for human diseases. However, many constraints remain, including shallow binding surfaces and dynamic conformation changes upon interaction. A particularly challenging aspect is the undesirable off-target effects caused by inherent structural similarity among the protein families. To tackle this problem, phage display has been used to engineer PPIs for high-specificity binders with improved binding affinity and greatly reduced undesirable interactions with closely related proteins. Although general steps of phage display are standardized, library design is highly variable depending on experimental contexts. Here in this review, we examined recent advances in the structure-based combinatorial library design and the advantages and limitations of different approaches. The strategies described here can be explored for other protein-protein interactions and aid in designing new libraries or improving on previous libraries.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Anidrases Carbônicas/genética , Descoberta de Drogas , Humanos , Proteínas
11.
Biology (Basel) ; 10(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34439945

RESUMO

The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.

12.
Sci Rep ; 11(1): 9510, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947911

RESUMO

The current study describes the construction of various ligand-based machine learning models to be used for drug-repurposing against the family of G-Protein Coupled Receptors (GPCRs). In building these models, we collected > 500,000 data points, encompassing experimentally measured molecular association data of > 160,000 unique ligands against > 250 GPCRs. These data points were retrieved from the GPCR-Ligand Association (GLASS) database. We have used diverse molecular featurization methods to describe the input molecules. Multiple supervised ML algorithms were developed, tested and compared for their accuracy, F scores, as well as for their Matthews' correlation coefficient scores (MCC). Our data suggest that combined with molecular fingerprinting, ensemble decision trees and gradient boosted trees ML algorithms are on the accuracy border of the rather sophisticated deep neural nets (DNNs)-based algorithms. On a test dataset, these models displayed an excellent performance, reaching a ~ 90% classification accuracy. Additionally, we showcase a few examples where our models were able to identify interesting connections between known drugs from the Drug-Bank database and members of the GPCR family of receptors. Our findings are in excellent agreement with previously reported experimental observations in the literature. We hope the models presented in this paper synergize with the currently ongoing interest of applying machine learning modeling in the field of drug repurposing and computational drug discovery in general.

13.
Sci Rep ; 11(1): 7429, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795718

RESUMO

The 2019 novel coronavirus pandemic caused by SARS-CoV-2 remains a serious health threat to humans and there is an urgent need to develop therapeutics against this deadly virus. Recent scientific evidences have suggested that the main protease (Mpro) enzyme in SARS-CoV-2 can be an ideal drug target due to its crucial role in the viral replication and transcription processes. Therefore, there are ongoing research efforts to identify drug candidates against SARS-CoV-2 Mpro that resulted in hundreds of X-ray crystal structures of ligand-bound Mpro complexes in the Protein Data Bank (PDB) describing the interactions of different fragment chemotypes within different sites of the Mpro. In this work, we performed rigorous molecular dynamics (MD) simulation of 62 reversible ligand-Mpro complexes in the PDB to gain mechanistic insights about their interactions at the atomic level. Using a total of over 3 µs long MD trajectories, we characterized different pockets in the apo Mpro structure, and analyzed the dynamic interactions and binding affinity of ligands within those pockets. Our results identified the key residues that stabilize the ligands in the catalytic sites and other pockets of Mpro. Our analyses unraveled the role of a lateral pocket in the catalytic site in Mpro that is critical for enhancing the ligand binding to the enzyme. We also highlighted the important contribution from HIS163 in the lateral pocket towards ligand binding and affinity against Mpro through computational mutation analyses. Further, we revealed the effects of explicit water molecules and Mpro dimerization in the ligand association with the target. Thus, comprehensive molecular-level insights gained from this work can be useful to identify or design potent small molecule inhibitors against SARS-CoV-2 Mpro.


Assuntos
Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2/metabolismo , Proteínas da Matriz Viral/antagonistas & inibidores , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Bases de Dados de Proteínas , Humanos , Ligantes , Mutagênese Sítio-Dirigida , Análise de Componente Principal , Inibidores de Proteases/metabolismo , SARS-CoV-2/isolamento & purificação , Termodinâmica , Proteínas da Matriz Viral/metabolismo
14.
Channels (Austin) ; 15(1): 360-374, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33825665

RESUMO

Vitamin D is known to elicit many biological effects in diverse tissue types and is thought to act almost exclusively upon its canonical receptor within the nucleus, leading to gene transcriptional changes and the subsequent cellular response. However, not all the observed effects of vitamin D can be attributed to this sole mechanism, and other cellular targets likely exist but remain to be identified. Our recent discovery that vitamin D is a partial agonist of the Transient Receptor Potential Vanilloid family 1 (TRPV1) channel may provide new insights as to how this important vitamin exerts its biological effects either independently or in addition to the nuclear vitamin D receptor. In this review, we discuss the literature surrounding this apparent discrepancy in vitamin D signaling and compare vitamin D with known TRPV1 ligands with respect to their binding to TRPV1. Furthermore, we provide evidence supporting the notion that this novel vitamin D/TRPV1 axis may explain some of the beneficial actions of this vitamin in disease states where TRPV1 expression and vitamin D deficiency are known to overlap. Finally, we discuss whether vitamin D may also act on other members of the TRP family of ion channels.


Assuntos
Vitamina D , Capsaicina , Dor , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório
15.
Circulation ; 143(22): 2188-2204, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33832341

RESUMO

BACKGROUND: SGLT2 (sodium/glucose cotransporter 2) inhibitors exert robust cardioprotective effects against heart failure in patients with diabetes, and there is intense interest to identify the underlying molecular mechanisms that afford this protection. Because the induction of the late component of the cardiac sodium channel current (late-INa) is involved in the etiology of heart failure, we investigated whether these drugs inhibit late-INa. METHODS: Electrophysiological, in silico molecular docking, molecular, calcium imaging, and whole heart perfusion techniques were used to address this question. RESULTS: The SGLT2 inhibitor empagliflozin reduced late-INa in cardiomyocytes from mice with heart failure and in cardiac Nav1.5 sodium channels containing the long QT syndrome 3 mutations R1623Q or ΔKPQ. Empagliflozin, dapagliflozin, and canagliflozin are all potent and selective inhibitors of H2O2-induced late-INa (half maximal inhibitory concentration = 0.79, 0.58, and 1.26 µM, respectively) with little effect on peak sodium current. In mouse cardiomyocytes, empagliflozin reduced the incidence of spontaneous calcium transients induced by the late-INa activator veratridine in a similar manner to tetrodotoxin, ranolazine, and lidocaine. The putative binding sites for empagliflozin within Nav1.5 were investigated by simulations of empagliflozin docking to a three-dimensional homology model of human Nav1.5 and point mutagenic approaches. Our results indicate that empagliflozin binds to Nav1.5 in the same region as local anesthetics and ranolazine. In an acute model of myocardial injury, perfusion of isolated mouse hearts with empagliflozin or tetrodotoxin prevented activation of the cardiac NLRP3 (nuclear-binding domain-like receptor 3) inflammasome and improved functional recovery after ischemia. CONCLUSIONS: Our results provide evidence that late-INa may be an important molecular target in the heart for the SGLT2 inhibitors, contributing to their unexpected cardioprotective effects.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Canais de Sódio/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Compostos Benzidrílicos/uso terapêutico , Glucosídeos/uso terapêutico , Humanos , Masculino , Camundongos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
16.
Bioinformatics ; 37(19): 3367-3368, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33742661

RESUMO

SUMMARY: 'PoseFilter' is a PyMOL plugin that assists in analyses and filtering of docked poses. PoseFilter enables automatic detection of symmetric poses from docking outputs and can be accessed using both graphical user interface and command-line options within the PyMOL program. Two methods of analyses, root mean square deviations and interaction fingerprints, are available from this plugin. The capabilities of the plugin are demonstrated using docking outputs from different oligomeric protein-ligand complexes. AVAILABILITY AND IMPLEMENTATION: The plugin can be downloaded from the GitHub page, https://github.com/skalyaanamoorthy/PoseFilter. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

17.
Sci Rep ; 10(1): 16262, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004839

RESUMO

Off-target interactions of drugs with the human ether-à-go-go related gene 1 (hERG1) channel have been associated with severe cardiotoxic conditions leading to the withdrawal of many drugs from the market over the last decades. Consequently, predicting drug-induced hERG-liability is now a prerequisite in any drug discovery campaign. Understanding the atomic level interactions of drug with the channel is essential to guide the efficient development of safe drugs. Here we utilize the recent cryo-EM structure of the hERG channel and describe an integrated computational workflow to characterize different drug-hERG interactions. The workflow employs various structure-based approaches and provides qualitative and quantitative insights into drug binding to hERG. Our protocol accurately differentiated the strong blockers from weak and revealed three potential anchoring sites in hERG. Drugs engaging in all these sites tend to have high affinity towards hERG. Our results were cross-validated using a fluorescence polarization kit binding assay and with electrophysiology measurements on the wild-type (WT-hERG) and on the two hERG mutants (Y652A-hERG and F656A-hERG), using the patch clamp technique on HEK293 cells. Finally, our analyses show that drugs binding to hERG disrupt and hijack certain native-structural networks in the channel, thereby, gaining more affinity towards hERG.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Biologia Computacional/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Relação Estrutura-Atividade
18.
NAR Genom Bioinform ; 2(2): lqaa024, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575581

RESUMO

Multiple sequence alignments (MSAs) play a pivotal role in studies of molecular sequence data, but nobody has developed a minimum reporting standard (MRS) to quantify the completeness of MSAs in terms of completely specified nucleotides or amino acids. We present an MRS that relies on four simple completeness metrics. The metrics are implemented in AliStat, a program developed to support the MRS. A survey of published MSAs illustrates the benefits and unprecedented transparency offered by the MRS.

19.
Biochim Biophys Acta Gen Subj ; 1863(6): 1116-1126, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30978379

RESUMO

BACKGROUND: Human CaV1.2 (hCav1.2), a calcium selective voltage-gated channel, plays important roles in normal cardiac and neuronal functions. Calcium influx and gating mechanisms leading to the activation of hCaV1.2 are critical for its functionalities. Lack of an experimentally resolved structure of hCaV1.2 remains a significant impediment in molecular-level understanding of this channel. This work focuses on building atomistic hCaV1.2 model and studying calcium influx using computational approaches. METHODS: We employed homology modeling and molecular dynamics (MD) to build the structure of hCaV1.2. Subsequently, we employed steered molecular dynamics (SMD) to understand calcium ion permeation in hCaV1.2. RESULTS: We report a comprehensive three-dimensional model of a closed state hCaV1.2 refined under physiological membrane-bound conditions using MD simulations. Our SMD simulations on the model revealed four important barriers for ion permeation: this includes three calcium binding sites formed by the EEEE- and TTTT- rings within the selectivity filter region and a large barrier rendered by the hydrophobic internal gate. Our results also revealed that the first hydration shell of calcium remained intact throughout the simulations, thus playing an important role in ion permeation in hCaV1.2. CONCLUSIONS: Our results have provided some important mechanistic insights into the structure, dynamics and ion permeation in hCaV1.2. The significant barriers for ion permeation formed by the four phenylalanine residues at the internal gate region suggest that this site is important for channel activation.


Assuntos
Canais de Cálcio Tipo L/química , Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Canais de Cálcio Tipo L/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...